Skip to main content

Native SQL Expressions

Native SQL expressions are an important feature to leverage database-specific capabilities, as database products always have proprietary features.

Example 1: Regular Expression Matching

This example shows how to use regular expression matching in Oracle and HSQLDB:

AuthorTable table = Tables.AUTHOR_TABLE;

List<Author> authors = sqlClient
.createQuery(table)
.where(
Predicate.sql(
"regexp_like(%e, %v)",
it -> it
.expression(table.firstName())
.value("^Ste(v|ph)en$")
)
)
.select(table)
.execute();
info

In the Java code, Predicate.sql is called to create a query condition based on native SQL. In fact, other expression types also support native SQL expressions. There are 5 sql functions:

  1. Predicate.sql(...)
  2. Expression.string().sql(...)
  3. Expression.numeric().sql(...)
  4. Expression.comparable().sql(...)
  5. Expression.any().sql(...)

Kotlin does not have this issue, its API is unified.

The first parameter of sql(...) is the SQL template string, which can contain special symbols %e and %v:

  • %e: Expression, to embed an expression
  • %v: Value, to embed a value

The second parameter of sql(...) is optional, a lambda expression whose parameter is an object supporting two methods:

  • expression(Expression<?>): Embed an expression, corresponding to %e in SQL template.
  • value(Object): Embed a value, corresponding to %v in SQL template.

The final generated SQL is:

select
tb_1_.ID,
tb_1_.FIRST_NAME,
tb_1_.LAST_NAME,
tb_1_.GENDER
from AUTHOR as tb_1_
where
regexp_like(tb_1_.FIRST_NAME, ?)

Example 2: Analytic Functions

Let's look at another example using analytic functions:

List<Tuple3<Book, Integer, Integer>> tuples = sqlClient
.createQuery(table)
.select(
table,
Expression.numeric().sql(
Integer.class,
"rank() over(order by %e desc)",
table.price()
),
Expression.numeric().sql(
Integer.class,
"rank() over(partition by %e order by %e desc)",
new Expression[] { table.storeId(), table.price() }
)
)
.execute();

Three columns are queried here:

  • First column: Book object
  • Second column: The rank of the book price among all books
  • Third column: The rank of the book price within its store

The generated SQL is:

select
tb_1_.ID,
tb_1_.NAME,
tb_1_.EDITION,
tb_1_.PRICE,
tb_1_.STORE_ID,
rank() over(
order by tb_1_.PRICE desc
),
rank() over(
partition by tb_1_.STORE_ID
order by tb_1_.PRICE desc
)
from BOOK tb_1_